# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import warnings from typing import Any, Iterable, Optional, Union, cast from airflow.models import BaseOperator from airflow.providers.amazon.aws.hooks.s3 import S3Hook from airflow.providers.mongo.hooks.mongo import MongoHook from airflow.utils.decorators import apply_defaults from bson import json_util _DEPRECATION_MSG = "The s3_conn_id parameter has been deprecated. You should pass instead the aws_conn_id parameter." class MongoToS3Operator(BaseOperator): """Operator meant to move data from mongo via pymongo to s3 via boto. :param mongo_conn_id: reference to a specific mongo connection :type mongo_conn_id: str :param aws_conn_id: reference to a specific S3 connection :type aws_conn_id: str :param mongo_collection: reference to a specific collection in your mongo db :type mongo_collection: str :param mongo_query: query to execute. A list including a dict of the query :type mongo_query: list :param s3_bucket: reference to a specific S3 bucket to store the data :type s3_bucket: str :param s3_key: in which S3 key the file will be stored :type s3_key: str :param mongo_db: reference to a specific mongo database :type mongo_db: str :param replace: whether or not to replace the file in S3 if it previously existed :type replace: bool :param allow_disk_use: in the case you are retrieving a lot of data, you may have to use the disk to save it instead of saving all in the RAM :type allow_disk_use: bool :param compression: type of compression to use for output file in S3. Currently only gzip is supported. :type compression: str """ template_fields = ("s3_bucket", "s3_key", "mongo_query", "mongo_collection") ui_color = "#589636" # pylint: disable=too-many-instance-attributes @apply_defaults def __init__( self, *, s3_conn_id: Optional[str] = None, mongo_conn_id: str = "mongo_default", aws_conn_id: str = "aws_default", mongo_collection: str, mongo_query: Union[list, dict], s3_bucket: str, s3_key: str, mongo_db: Optional[str] = None, replace: bool = False, allow_disk_use: bool = False, compression: Optional[str] = None, **kwargs, ) -> None: super().__init__(**kwargs) if s3_conn_id: warnings.warn(_DEPRECATION_MSG, DeprecationWarning, stacklevel=3) aws_conn_id = s3_conn_id self.mongo_conn_id = mongo_conn_id self.aws_conn_id = aws_conn_id self.mongo_db = mongo_db self.mongo_collection = mongo_collection # Grab query and determine if we need to run an aggregate pipeline self.mongo_query = mongo_query self.is_pipeline = isinstance(self.mongo_query, list) self.s3_bucket = s3_bucket self.s3_key = s3_key self.replace = replace self.allow_disk_use = allow_disk_use self.compression = compression def execute(self, context) -> bool: """Is written to depend on transform method""" s3_conn = S3Hook(self.aws_conn_id) # Grab collection and execute query according to whether or not it is a pipeline if self.is_pipeline: results = MongoHook(self.mongo_conn_id).aggregate( mongo_collection=self.mongo_collection, aggregate_query=cast(list, self.mongo_query), mongo_db=self.mongo_db, allowDiskUse=self.allow_disk_use, ) else: results = MongoHook(self.mongo_conn_id).find( mongo_collection=self.mongo_collection, query=cast(dict, self.mongo_query), mongo_db=self.mongo_db, allowDiskUse=self.allow_disk_use, ) # Performs transform then stringifies the docs results into json format docs_str = self._stringify(self.transform(results)) s3_conn.load_string( string_data=docs_str, key=self.s3_key, bucket_name=self.s3_bucket, replace=self.replace, compression=self.compression, ) @staticmethod def _stringify(iterable: Iterable, joinable: str = "\n") -> str: """ Takes an iterable (pymongo Cursor or Array) containing dictionaries and returns a stringified version using python join """ return joinable.join( [json.dumps(doc, default=json_util.default) for doc in iterable] ) @staticmethod def transform(docs: Any) -> Any: """This method is meant to be extended by child classes to perform transformations unique to those operators needs. Processes pyMongo cursor and returns an iterable with each element being a JSON serializable dictionary Base transform() assumes no processing is needed ie. docs is a pyMongo cursor of documents and cursor just needs to be passed through Override this method for custom transformations """ return docs