# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Any, Dict, List, Optional from airflow.exceptions import AirflowException from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook class EmrHook(AwsBaseHook): """ Interact with AWS EMR. emr_conn_id is only necessary for using the create_job_flow method. Additional arguments (such as ``aws_conn_id``) may be specified and are passed down to the underlying AwsBaseHook. .. seealso:: :class:`~airflow.providers.amazon.aws.hooks.base_aws.AwsBaseHook` """ conn_name_attr = "emr_conn_id" default_conn_name = "emr_default" conn_type = "emr" hook_name = "Elastic MapReduce" def __init__( self, emr_conn_id: Optional[str] = default_conn_name, *args, **kwargs ) -> None: self.emr_conn_id = emr_conn_id kwargs["client_type"] = "emr" super().__init__(*args, **kwargs) def get_cluster_id_by_name( self, emr_cluster_name: str, cluster_states: List[str] ) -> Optional[str]: """ Fetch id of EMR cluster with given name and (optional) states. Will return only if single id is found. :param emr_cluster_name: Name of a cluster to find :type emr_cluster_name: str :param cluster_states: State(s) of cluster to find :type cluster_states: list :return: id of the EMR cluster """ response = self.get_conn().list_clusters(ClusterStates=cluster_states) matching_clusters = list( filter( lambda cluster: cluster["Name"] == emr_cluster_name, response["Clusters"], ) ) if len(matching_clusters) == 1: cluster_id = matching_clusters[0]["Id"] self.log.info( "Found cluster name = %s id = %s", emr_cluster_name, cluster_id ) return cluster_id elif len(matching_clusters) > 1: raise AirflowException( f"More than one cluster found for name {emr_cluster_name}" ) else: self.log.info("No cluster found for name %s", emr_cluster_name) return None def create_job_flow(self, job_flow_overrides: Dict[str, Any]) -> Dict[str, Any]: """ Creates a job flow using the config from the EMR connection. Keys of the json extra hash may have the arguments of the boto3 run_job_flow method. Overrides for this config may be passed as the job_flow_overrides. """ if not self.emr_conn_id: raise AirflowException("emr_conn_id must be present to use create_job_flow") emr_conn = self.get_connection(self.emr_conn_id) config = emr_conn.extra_dejson.copy() config.update(job_flow_overrides) response = self.get_conn().run_job_flow(**config) return response