# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import List, Optional from airflow.exceptions import AirflowException from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook from airflow.providers.amazon.aws.operators.sagemaker_base import SageMakerBaseOperator from airflow.utils.decorators import apply_defaults class SageMakerTransformOperator(SageMakerBaseOperator): """ Initiate a SageMaker transform job. This operator returns The ARN of the model created in Amazon SageMaker. :param config: The configuration necessary to start a transform job (templated). If you need to create a SageMaker transform job based on an existed SageMaker model:: config = transform_config If you need to create both SageMaker model and SageMaker Transform job:: config = { 'Model': model_config, 'Transform': transform_config } For details of the configuration parameter of transform_config see :py:meth:`SageMaker.Client.create_transform_job` For details of the configuration parameter of model_config, See: :py:meth:`SageMaker.Client.create_model` :type config: dict :param aws_conn_id: The AWS connection ID to use. :type aws_conn_id: str :param wait_for_completion: Set to True to wait until the transform job finishes. :type wait_for_completion: bool :param check_interval: If wait is set to True, the time interval, in seconds, that this operation waits to check the status of the transform job. :type check_interval: int :param max_ingestion_time: If wait is set to True, the operation fails if the transform job doesn't finish within max_ingestion_time seconds. If you set this parameter to None, the operation does not timeout. :type max_ingestion_time: int """ @apply_defaults def __init__( self, *, config: dict, wait_for_completion: bool = True, check_interval: int = 30, max_ingestion_time: Optional[int] = None, **kwargs, ): super().__init__(config=config, **kwargs) self.config = config self.wait_for_completion = wait_for_completion self.check_interval = check_interval self.max_ingestion_time = max_ingestion_time self.create_integer_fields() def create_integer_fields(self) -> None: """Set fields which should be casted to integers.""" self.integer_fields: List[List[str]] = [ ["Transform", "TransformResources", "InstanceCount"], ["Transform", "MaxConcurrentTransforms"], ["Transform", "MaxPayloadInMB"], ] if "Transform" not in self.config: for field in self.integer_fields: field.pop(0) def expand_role(self) -> None: if "Model" not in self.config: return config = self.config["Model"] if "ExecutionRoleArn" in config: hook = AwsBaseHook(self.aws_conn_id, client_type="iam") config["ExecutionRoleArn"] = hook.expand_role(config["ExecutionRoleArn"]) def execute(self, context) -> dict: self.preprocess_config() model_config = self.config.get("Model") transform_config = self.config.get("Transform", self.config) if model_config: self.log.info( "Creating SageMaker Model %s for transform job", model_config["ModelName"], ) self.hook.create_model(model_config) self.log.info( "Creating SageMaker transform Job %s.", transform_config["TransformJobName"] ) response = self.hook.create_transform_job( transform_config, wait_for_completion=self.wait_for_completion, check_interval=self.check_interval, max_ingestion_time=self.max_ingestion_time, ) if response["ResponseMetadata"]["HTTPStatusCode"] != 200: raise AirflowException( f"Sagemaker transform Job creation failed: {response}" ) else: return { "Model": self.hook.describe_model(transform_config["ModelName"]), "Transform": self.hook.describe_transform_job( transform_config["TransformJobName"] ), }