You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
282 lines
12 KiB
282 lines
12 KiB
# Licensed to the Apache Software Foundation (ASF) under one |
|
# or more contributor license agreements. See the NOTICE file |
|
# distributed with this work for additional information |
|
# regarding copyright ownership. The ASF licenses this file |
|
# to you under the Apache License, Version 2.0 (the |
|
# "License"); you may not use this file except in compliance |
|
# with the License. You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, |
|
# software distributed under the License is distributed on an |
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
|
# KIND, either express or implied. See the License for the |
|
# specific language governing permissions and limitations |
|
# under the License. |
|
|
|
# |
|
"""This module contains helper functions for MLEngine operators.""" |
|
|
|
import base64 |
|
import json |
|
import os |
|
import re |
|
from typing import Callable, Dict, Iterable, List, Optional, Tuple, TypeVar |
|
from urllib.parse import urlsplit |
|
|
|
import dill |
|
from airflow import DAG |
|
from airflow.exceptions import AirflowException |
|
from airflow.operators.python import PythonOperator |
|
from airflow.providers.google.cloud.hooks.gcs import GCSHook |
|
from airflow.providers.google.cloud.operators.dataflow import ( |
|
DataflowCreatePythonJobOperator, |
|
) |
|
from airflow.providers.google.cloud.operators.mlengine import ( |
|
MLEngineStartBatchPredictionJobOperator, |
|
) |
|
|
|
T = TypeVar("T", bound=Callable) # pylint: disable=invalid-name |
|
|
|
|
|
def create_evaluate_ops( # pylint: disable=too-many-arguments |
|
task_prefix: str, |
|
data_format: str, |
|
input_paths: List[str], |
|
prediction_path: str, |
|
metric_fn_and_keys: Tuple[T, Iterable[str]], |
|
validate_fn: T, |
|
batch_prediction_job_id: Optional[str] = None, |
|
region: Optional[str] = None, |
|
project_id: Optional[str] = None, |
|
dataflow_options: Optional[Dict] = None, |
|
model_uri: Optional[str] = None, |
|
model_name: Optional[str] = None, |
|
version_name: Optional[str] = None, |
|
dag: Optional[DAG] = None, |
|
py_interpreter="python3", |
|
): |
|
""" |
|
Creates Operators needed for model evaluation and returns. |
|
|
|
It gets prediction over inputs via Cloud ML Engine BatchPrediction API by |
|
calling MLEngineBatchPredictionOperator, then summarize and validate |
|
the result via Cloud Dataflow using DataFlowPythonOperator. |
|
|
|
For details and pricing about Batch prediction, please refer to the website |
|
https://cloud.google.com/ml-engine/docs/how-tos/batch-predict |
|
and for Cloud Dataflow, https://cloud.google.com/dataflow/docs/ |
|
|
|
It returns three chained operators for prediction, summary, and validation, |
|
named as ``<prefix>-prediction``, ``<prefix>-summary``, and ``<prefix>-validation``, |
|
respectively. |
|
(``<prefix>`` should contain only alphanumeric characters or hyphen.) |
|
|
|
The upstream and downstream can be set accordingly like: |
|
|
|
.. code-block:: python |
|
|
|
pred, _, val = create_evaluate_ops(...) |
|
pred.set_upstream(upstream_op) |
|
... |
|
downstream_op.set_upstream(val) |
|
|
|
Callers will provide two python callables, metric_fn and validate_fn, in |
|
order to customize the evaluation behavior as they wish. |
|
|
|
- metric_fn receives a dictionary per instance derived from json in the |
|
batch prediction result. The keys might vary depending on the model. |
|
It should return a tuple of metrics. |
|
- validation_fn receives a dictionary of the averaged metrics that metric_fn |
|
generated over all instances. |
|
The key/value of the dictionary matches to what's given by |
|
metric_fn_and_keys arg. |
|
The dictionary contains an additional metric, 'count' to represent the |
|
total number of instances received for evaluation. |
|
The function would raise an exception to mark the task as failed, in a |
|
case the validation result is not okay to proceed (i.e. to set the trained |
|
version as default). |
|
|
|
Typical examples are like this: |
|
|
|
.. code-block:: python |
|
|
|
def get_metric_fn_and_keys(): |
|
import math # imports should be outside of the metric_fn below. |
|
def error_and_squared_error(inst): |
|
label = float(inst['input_label']) |
|
classes = float(inst['classes']) # 0 or 1 |
|
err = abs(classes-label) |
|
squared_err = math.pow(classes-label, 2) |
|
return (err, squared_err) # returns a tuple. |
|
return error_and_squared_error, ['err', 'mse'] # key order must match. |
|
|
|
def validate_err_and_count(summary): |
|
if summary['err'] > 0.2: |
|
raise ValueError('Too high err>0.2; summary=%s' % summary) |
|
if summary['mse'] > 0.05: |
|
raise ValueError('Too high mse>0.05; summary=%s' % summary) |
|
if summary['count'] < 1000: |
|
raise ValueError('Too few instances<1000; summary=%s' % summary) |
|
return summary |
|
|
|
For the details on the other BatchPrediction-related arguments (project_id, |
|
job_id, region, data_format, input_paths, prediction_path, model_uri), |
|
please refer to MLEngineBatchPredictionOperator too. |
|
|
|
:param task_prefix: a prefix for the tasks. Only alphanumeric characters and |
|
hyphen are allowed (no underscores), since this will be used as dataflow |
|
job name, which doesn't allow other characters. |
|
:type task_prefix: str |
|
|
|
:param data_format: either of 'TEXT', 'TF_RECORD', 'TF_RECORD_GZIP' |
|
:type data_format: str |
|
|
|
:param input_paths: a list of input paths to be sent to BatchPrediction. |
|
:type input_paths: list[str] |
|
|
|
:param prediction_path: GCS path to put the prediction results in. |
|
:type prediction_path: str |
|
|
|
:param metric_fn_and_keys: a tuple of metric_fn and metric_keys: |
|
|
|
- metric_fn is a function that accepts a dictionary (for an instance), |
|
and returns a tuple of metric(s) that it calculates. |
|
|
|
- metric_keys is a list of strings to denote the key of each metric. |
|
:type metric_fn_and_keys: tuple of a function and a list[str] |
|
|
|
:param validate_fn: a function to validate whether the averaged metric(s) is |
|
good enough to push the model. |
|
:type validate_fn: function |
|
|
|
:param batch_prediction_job_id: the id to use for the Cloud ML Batch |
|
prediction job. Passed directly to the MLEngineBatchPredictionOperator as |
|
the job_id argument. |
|
:type batch_prediction_job_id: str |
|
|
|
:param project_id: the Google Cloud project id in which to execute |
|
Cloud ML Batch Prediction and Dataflow jobs. If None, then the `dag`'s |
|
`default_args['project_id']` will be used. |
|
:type project_id: str |
|
|
|
:param region: the Google Cloud region in which to execute Cloud ML |
|
Batch Prediction and Dataflow jobs. If None, then the `dag`'s |
|
`default_args['region']` will be used. |
|
:type region: str |
|
|
|
:param dataflow_options: options to run Dataflow jobs. If None, then the |
|
`dag`'s `default_args['dataflow_default_options']` will be used. |
|
:type dataflow_options: dictionary |
|
|
|
:param model_uri: GCS path of the model exported by Tensorflow using |
|
``tensorflow.estimator.export_savedmodel()``. It cannot be used with |
|
model_name or version_name below. See MLEngineBatchPredictionOperator for |
|
more detail. |
|
:type model_uri: str |
|
|
|
:param model_name: Used to indicate a model to use for prediction. Can be |
|
used in combination with version_name, but cannot be used together with |
|
model_uri. See MLEngineBatchPredictionOperator for more detail. If None, |
|
then the `dag`'s `default_args['model_name']` will be used. |
|
:type model_name: str |
|
|
|
:param version_name: Used to indicate a model version to use for prediction, |
|
in combination with model_name. Cannot be used together with model_uri. |
|
See MLEngineBatchPredictionOperator for more detail. If None, then the |
|
`dag`'s `default_args['version_name']` will be used. |
|
:type version_name: str |
|
|
|
:param dag: The `DAG` to use for all Operators. |
|
:type dag: airflow.models.DAG |
|
|
|
:param py_interpreter: Python version of the beam pipeline. |
|
If None, this defaults to the python3. |
|
To track python versions supported by beam and related |
|
issues check: https://issues.apache.org/jira/browse/BEAM-1251 |
|
:type py_interpreter: str |
|
|
|
:returns: a tuple of three operators, (prediction, summary, validation) |
|
:rtype: tuple(DataFlowPythonOperator, DataFlowPythonOperator, |
|
PythonOperator) |
|
""" |
|
batch_prediction_job_id = batch_prediction_job_id or "" |
|
dataflow_options = dataflow_options or {} |
|
region = region or "" |
|
|
|
# Verify that task_prefix doesn't have any special characters except hyphen |
|
# '-', which is the only allowed non-alphanumeric character by Dataflow. |
|
if not re.match(r"^[a-zA-Z][-A-Za-z0-9]*$", task_prefix): |
|
raise AirflowException( |
|
"Malformed task_id for DataFlowPythonOperator (only alphanumeric " |
|
"and hyphens are allowed but got: " + task_prefix |
|
) |
|
|
|
metric_fn, metric_keys = metric_fn_and_keys |
|
if not callable(metric_fn): |
|
raise AirflowException("`metric_fn` param must be callable.") |
|
if not callable(validate_fn): |
|
raise AirflowException("`validate_fn` param must be callable.") |
|
|
|
if dag is not None and dag.default_args is not None: |
|
default_args = dag.default_args |
|
project_id = project_id or default_args.get("project_id") |
|
region = region or default_args["region"] |
|
model_name = model_name or default_args.get("model_name") |
|
version_name = version_name or default_args.get("version_name") |
|
dataflow_options = dataflow_options or default_args.get( |
|
"dataflow_default_options" |
|
) |
|
|
|
evaluate_prediction = MLEngineStartBatchPredictionJobOperator( |
|
task_id=(task_prefix + "-prediction"), |
|
project_id=project_id, |
|
job_id=batch_prediction_job_id, |
|
region=region, |
|
data_format=data_format, |
|
input_paths=input_paths, |
|
output_path=prediction_path, |
|
uri=model_uri, |
|
model_name=model_name, |
|
version_name=version_name, |
|
dag=dag, |
|
) |
|
|
|
metric_fn_encoded = base64.b64encode(dill.dumps(metric_fn, recurse=True)).decode() |
|
evaluate_summary = DataflowCreatePythonJobOperator( |
|
task_id=(task_prefix + "-summary"), |
|
py_file=os.path.join( |
|
os.path.dirname(__file__), "mlengine_prediction_summary.py" |
|
), |
|
dataflow_default_options=dataflow_options, |
|
options={ |
|
"prediction_path": prediction_path, |
|
"metric_fn_encoded": metric_fn_encoded, |
|
"metric_keys": ",".join(metric_keys), |
|
}, |
|
py_interpreter=py_interpreter, |
|
py_requirements=["apache-beam[gcp]>=2.14.0"], |
|
dag=dag, |
|
) |
|
evaluate_summary.set_upstream(evaluate_prediction) |
|
|
|
def apply_validate_fn(*args, templates_dict, **kwargs): |
|
prediction_path = templates_dict["prediction_path"] |
|
scheme, bucket, obj, _, _ = urlsplit(prediction_path) |
|
if scheme != "gs" or not bucket or not obj: |
|
raise ValueError(f"Wrong format prediction_path: {prediction_path}") |
|
summary = os.path.join(obj.strip("/"), "prediction.summary.json") |
|
gcs_hook = GCSHook() |
|
summary = json.loads(gcs_hook.download(bucket, summary)) |
|
return validate_fn(summary) |
|
|
|
evaluate_validation = PythonOperator( |
|
task_id=(task_prefix + "-validation"), |
|
python_callable=apply_validate_fn, |
|
templates_dict={"prediction_path": prediction_path}, |
|
dag=dag, |
|
) |
|
evaluate_validation.set_upstream(evaluate_summary) |
|
|
|
return evaluate_prediction, evaluate_summary, evaluate_validation
|
|
|