You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
4.1 KiB
102 lines
4.1 KiB
# |
|
# Licensed to the Apache Software Foundation (ASF) under one |
|
# or more contributor license agreements. See the NOTICE file |
|
# distributed with this work for additional information |
|
# regarding copyright ownership. The ASF licenses this file |
|
# to you under the Apache License, Version 2.0 (the |
|
# "License"); you may not use this file except in compliance |
|
# with the License. You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, |
|
# software distributed under the License is distributed on an |
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
|
# KIND, either express or implied. See the License for the |
|
# specific language governing permissions and limitations |
|
# under the License. |
|
from typing import Optional |
|
|
|
from airflow.exceptions import AirflowException |
|
from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook |
|
from airflow.providers.amazon.aws.operators.sagemaker_base import SageMakerBaseOperator |
|
from airflow.utils.decorators import apply_defaults |
|
|
|
|
|
class SageMakerTuningOperator(SageMakerBaseOperator): |
|
""" |
|
Initiate a SageMaker hyperparameter tuning job. |
|
|
|
This operator returns The ARN of the tuning job created in Amazon SageMaker. |
|
|
|
:param config: The configuration necessary to start a tuning job (templated). |
|
|
|
For details of the configuration parameter see |
|
:py:meth:`SageMaker.Client.create_hyper_parameter_tuning_job` |
|
:type config: dict |
|
:param aws_conn_id: The AWS connection ID to use. |
|
:type aws_conn_id: str |
|
:param wait_for_completion: Set to True to wait until the tuning job finishes. |
|
:type wait_for_completion: bool |
|
:param check_interval: If wait is set to True, the time interval, in seconds, |
|
that this operation waits to check the status of the tuning job. |
|
:type check_interval: int |
|
:param max_ingestion_time: If wait is set to True, the operation fails |
|
if the tuning job doesn't finish within max_ingestion_time seconds. If you |
|
set this parameter to None, the operation does not timeout. |
|
:type max_ingestion_time: int |
|
""" |
|
|
|
integer_fields = [ |
|
["HyperParameterTuningJobConfig", "ResourceLimits", "MaxNumberOfTrainingJobs"], |
|
["HyperParameterTuningJobConfig", "ResourceLimits", "MaxParallelTrainingJobs"], |
|
["TrainingJobDefinition", "ResourceConfig", "InstanceCount"], |
|
["TrainingJobDefinition", "ResourceConfig", "VolumeSizeInGB"], |
|
["TrainingJobDefinition", "StoppingCondition", "MaxRuntimeInSeconds"], |
|
] |
|
|
|
@apply_defaults |
|
def __init__( |
|
self, |
|
*, |
|
config: dict, |
|
wait_for_completion: bool = True, |
|
check_interval: int = 30, |
|
max_ingestion_time: Optional[int] = None, |
|
**kwargs, |
|
): |
|
super().__init__(config=config, **kwargs) |
|
self.config = config |
|
self.wait_for_completion = wait_for_completion |
|
self.check_interval = check_interval |
|
self.max_ingestion_time = max_ingestion_time |
|
|
|
def expand_role(self) -> None: |
|
if "TrainingJobDefinition" in self.config: |
|
config = self.config["TrainingJobDefinition"] |
|
if "RoleArn" in config: |
|
hook = AwsBaseHook(self.aws_conn_id, client_type="iam") |
|
config["RoleArn"] = hook.expand_role(config["RoleArn"]) |
|
|
|
def execute(self, context) -> dict: |
|
self.preprocess_config() |
|
|
|
self.log.info( |
|
"Creating SageMaker Hyper-Parameter Tuning Job %s", |
|
self.config["HyperParameterTuningJobName"], |
|
) |
|
|
|
response = self.hook.create_tuning_job( |
|
self.config, |
|
wait_for_completion=self.wait_for_completion, |
|
check_interval=self.check_interval, |
|
max_ingestion_time=self.max_ingestion_time, |
|
) |
|
if response["ResponseMetadata"]["HTTPStatusCode"] != 200: |
|
raise AirflowException(f"Sagemaker Tuning Job creation failed: {response}") |
|
else: |
|
return { |
|
"Tuning": self.hook.describe_tuning_job( |
|
self.config["HyperParameterTuningJobName"] |
|
) |
|
}
|
|
|