Apache Airflow dags w/ backend configuration bundle.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

156 lines
5.6 KiB

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from airflow import DAG
from airflow.providers.yandex.operators.yandexcloud_dataproc import (
DataprocCreateClusterOperator,
DataprocCreateHiveJobOperator,
DataprocCreateMapReduceJobOperator,
DataprocCreatePysparkJobOperator,
DataprocCreateSparkJobOperator,
DataprocDeleteClusterOperator,
)
from airflow.utils.dates import days_ago
# should be filled with appropriate ids
# Airflow connection with type "yandexcloud" must be created.
# By default connection with id "yandexcloud_default" will be used
CONNECTION_ID = "yandexcloud_default"
# Name of the datacenter where Dataproc cluster will be created
AVAILABILITY_ZONE_ID = "ru-central1-c"
# Dataproc cluster jobs will produce logs in specified s3 bucket
S3_BUCKET_NAME_FOR_JOB_LOGS = ""
default_args = {
"owner": "airflow",
}
with DAG(
"example_yandexcloud_dataproc_operator",
default_args=default_args,
schedule_interval=None,
start_date=days_ago(1),
tags=["example"],
) as dag:
create_cluster = DataprocCreateClusterOperator(
task_id="create_cluster",
zone=AVAILABILITY_ZONE_ID,
connection_id=CONNECTION_ID,
s3_bucket=S3_BUCKET_NAME_FOR_JOB_LOGS,
)
create_hive_query = DataprocCreateHiveJobOperator(
task_id="create_hive_query",
query="SELECT 1;",
)
create_hive_query_from_file = DataprocCreateHiveJobOperator(
task_id="create_hive_query_from_file",
query_file_uri="s3a://data-proc-public/jobs/sources/hive-001/main.sql",
script_variables={
"CITIES_URI": "s3a://data-proc-public/jobs/sources/hive-001/cities/",
"COUNTRY_CODE": "RU",
},
)
create_mapreduce_job = DataprocCreateMapReduceJobOperator(
task_id="create_mapreduce_job",
main_class="org.apache.hadoop.streaming.HadoopStreaming",
file_uris=[
"s3a://data-proc-public/jobs/sources/mapreduce-001/mapper.py",
"s3a://data-proc-public/jobs/sources/mapreduce-001/reducer.py",
],
args=[
"-mapper",
"mapper.py",
"-reducer",
"reducer.py",
"-numReduceTasks",
"1",
"-input",
"s3a://data-proc-public/jobs/sources/data/cities500.txt.bz2",
"-output",
f"s3a://{S3_BUCKET_NAME_FOR_JOB_LOGS}/dataproc/job/results",
],
properties={
"yarn.app.mapreduce.am.resource.mb": "2048",
"yarn.app.mapreduce.am.command-opts": "-Xmx2048m",
"mapreduce.job.maps": "6",
},
)
create_spark_job = DataprocCreateSparkJobOperator(
task_id="create_spark_job",
main_jar_file_uri="s3a://data-proc-public/jobs/sources/java/dataproc-examples-1.0.jar",
main_class="ru.yandex.cloud.dataproc.examples.PopulationSparkJob",
file_uris=[
"s3a://data-proc-public/jobs/sources/data/config.json",
],
archive_uris=[
"s3a://data-proc-public/jobs/sources/data/country-codes.csv.zip",
],
jar_file_uris=[
"s3a://data-proc-public/jobs/sources/java/icu4j-61.1.jar",
"s3a://data-proc-public/jobs/sources/java/commons-lang-2.6.jar",
"s3a://data-proc-public/jobs/sources/java/opencsv-4.1.jar",
"s3a://data-proc-public/jobs/sources/java/json-20190722.jar",
],
args=[
"s3a://data-proc-public/jobs/sources/data/cities500.txt.bz2",
f"s3a://{S3_BUCKET_NAME_FOR_JOB_LOGS}/dataproc/job/results/${{JOB_ID}}",
],
properties={
"spark.submit.deployMode": "cluster",
},
)
create_pyspark_job = DataprocCreatePysparkJobOperator(
task_id="create_pyspark_job",
main_python_file_uri="s3a://data-proc-public/jobs/sources/pyspark-001/main.py",
python_file_uris=[
"s3a://data-proc-public/jobs/sources/pyspark-001/geonames.py",
],
file_uris=[
"s3a://data-proc-public/jobs/sources/data/config.json",
],
archive_uris=[
"s3a://data-proc-public/jobs/sources/data/country-codes.csv.zip",
],
args=[
"s3a://data-proc-public/jobs/sources/data/cities500.txt.bz2",
f"s3a://{S3_BUCKET_NAME_FOR_JOB_LOGS}/jobs/results/${{JOB_ID}}",
],
jar_file_uris=[
"s3a://data-proc-public/jobs/sources/java/dataproc-examples-1.0.jar",
"s3a://data-proc-public/jobs/sources/java/icu4j-61.1.jar",
"s3a://data-proc-public/jobs/sources/java/commons-lang-2.6.jar",
],
properties={
"spark.submit.deployMode": "cluster",
},
)
delete_cluster = DataprocDeleteClusterOperator(
task_id="delete_cluster",
)
create_cluster >> create_mapreduce_job >> create_hive_query >> create_hive_query_from_file
create_hive_query_from_file >> create_spark_job >> create_pyspark_job >> delete_cluster